
Supervised learning is an accurate method for network-based gene classification 

Supplemental Material 

Section 1: Methods and Data 
Section 1.1: Networks 
The networks used in this study are BioGRID, STRING-EXP, InBioMap, GIANT-TN, and STRING. Detailed              
information about the network properties and sources can be seen in Table S1, with the network construction                 
method and interaction type information coming from (Huang et al., 2018). BioGRID (version 3.4.136) is a                
low-throughput network that includes both genetic interactions, as well as physical protein-protein interactions             
(Stark et al., 2006). InBioMap (version 2016_09_12) is a high-throughput, scored network that contains              
physical protein-protein interactions as well as pathway database annotations incorporated as edges (Li et al.,               
2017). We used the “final-scores” as the edge weights. STRING (version 10.0) is a high-throughput, scored                
network that aggregates information from many data sources (Szklarczyk et al., 2015). We used two different                
STRING networks. First, we used the “combined” network that directly includes database annotations,             
text-mining, ortholog information, co-expression, and physical protein interactions (referred to as “STRING” in             
this study). We also used a subset of edges in STRING that had just the “experiments” data, thus restricting                   
the network to one constructed just from physical protein interactions in humans (referred to as “STRING-EXP”                
in this study). For both networks, we used the corresponding relationship scores as edge weights, after                
normalizing them to lie between 0 and 1. The GIANT-TN (version 1.0) network is the tissue-naïve network from                  
GIANT (Greene et al., 2015), referred to as the “Global” network on the website, and is constructed from both                   
low- and high-throughput data, and includes information from co-expression, non-protein sources, regulatory            
data, and physical protein-protein interactions. The GIANT-TN network is a fully connected, scored network. To               
add sparsity to the GIANT-TN network, we removed all edges with scores below 0.01 (equal to the prior the                   
Bayesian model used to construct the network). It is worth noting here that the purpose of this study is not to                     
compare networks against each other, but rather to determine the performance of SL methods vs LP methods                 
on various types of networks. 
 
 
 
Table S1. Information on the molecular networks. LT : low-throughput, HT : high-throughput, G : genetic, P : physical, 
DA : database annotations, CE : co-expression, NP : non-protein, R : regulation, CC : co-citation, O : orthologous. 

Network Number of 
Genes 

Number of 
Edges 

Edge Density Network 
Construction 

Method 

Weighted Interaction Type 

BioGRID 20,558 238,474 1.13e-3 LT No G, P 

STRING-EXP 14,089 141,629 7.08e-4 HT Yes P 

InBioMap 17,399 644,862 1.58e-3 HT Yes P, DA 

GIANT-TN 25,689 38,904,929 1.92e-3 LT, HT Yes CE, NP, P, R 

STRING 17,352 3,640,737 7.20e-3 HT Yes CC, CE, O, DA, P 
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Section 1.2: Model Selection and Hyperparameter Tuning 
The restart hyperparameter used in generating an influence matrix was determined by doing a grid search   α               
over values between 0.55 and 0.95 in 0.1 steps for all networks and geneset collections, optimizing for auPRC                  
using label propagation (Fig. S1). In general, there was not a strong dependence on It can be seen in              .α       
Figure S1 that a higher restart probability resulted in marginally better performance for the larger networks                
(STRING and GLOBAL), whereas as a smaller restart probability led to nominally better performance for the                
smaller networks such as BioGRID. In this study, we used = 0.85 for every geneset-collection–network          α      
combination, as offered good performance and had low variance. This was used for both LP-I and  0.85α =           α        
SL-I. We stress that the tuning of was never done for SL-I, and thus, our finding that SL methods generally       α               
outperform LP methods is not biased by this parameter tuning.  
 

 
Fig. S1. Tuning the restart probability hyperparameter for label propagation. A) Each point in each boxplot                
represents the average rank for a geneset-collection–network combination, where the five restart probabilities that were               
tried were ranked in terms of performance (auPRC) for each geneset in a geneset-collection using the standard                 
competition ranking. A restart probability of 0.85 was chosen for this study as it resulted in good overall performance as                    
well as low variance in performance for the different genset-collection–network combinations. B) The performance for               
each individual geneset-collection–network combination is compared across the five restart probabilities: 0.55, 0.65, 0.75,              
0.85 and 0.95. The methods are ranked by median value of auRPC with the highest scoring method on the left. There is                      
no strong dependence of auRPC on the restart probability.  
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Model selection of the supervised learning classifier was done by comparing six popular classifiers that are                
implemented in Python package Scikit Learn (Pedregosa et al., 2011). To determine the best supervised               
learning classifier, we compared their performance over every geneset-collection–network combination using           
their default hyperparameters in version 0.19 of Scikit Learn (Fig. S2). Logistic regression with L2               
regularization is marginally better than linear support vector machines and both these classifiers outperform              
random forest, logistic regression with L1 regularization, and support vector machines using the radial basis               
kernel and the 2nd order polynomial kernel. We note that the non-linear SVMs (radial basis and polynomial                 
kernels) took over two orders-of-magnitude longer to train, and thus, those models are not included in the                 
five-fold cross validation results.  
 

 
Fig. S2. Comparison of classifiers for supervised learning. A) Each point in each boxplot represents the average                 
rank for a geneset-collection–network combination, where the four classifiers were ranked by the auPRC for each geneset                 
in a geneset-collection using the standard competition ranking. Logistic regression with L2 regularization (LR-L2) was               
chosen as the classifier for supervised learning as it had slightly better overall performance than a linear support vector                   
machine (SVM). B) The auRPC for each individual geneset-collection–network combination is compared across six              
supervised learning classifiers: logistic-regression with L1 regularization (LR-L1), LR-L2, SVM models with three kernels              
(linear; SVM-LIN, radial basis function; SVM-RBF, 2nd order polynomial; SVM-POLY) and a random forest (RF). The                
classifiers are ranked by median value with the best performing one on the left.  
 
For the model selection of the embedding technique, we chose node2vec (Grover and Leskovec, 2016)               
because its competitive performance and ease of use (Goyal and Ferrara, 2018). The following              
hyperparameters were tuned based on the aggregated performance across all geneset-collections–network           
combinations: p - the breadth first search parameter, q - the depth first search parameter, d - embedding size, l                  
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- walk length, and k - context window size. We left r (number of walks per node) at it’s default value. Since p                     
and q are coupled, we performed a grid search for these two parameters leaving all others constant. Each of                   
the other hyperparameters was tuned by leaving the rest at their default values as described in the original                  
node2vec publication. The values for the hyperparameters were tuned over are; p, q - [0.1. 0.5, 1, 5, 10], d -                     
[ 64, 128, 256, 512, 1024, 2048], l - [ 20, 40, 60, 80, 100, 120, 140, 160, 180, 200], and k - [ 2, 4, 8, 16, 32, 64].                             
We found that in general there was a large range of values for each parameter where the results were near                    
optimal, and we chose – , , , , , and – for every     .1p = 0  .1q = 0  12d = 5  k = 8  20l = 1   0 r = 1    
geneset-collection–network combination. 
 
Section 1.3: Geneset-collections 
The geneset-collections used in this work are from the Gene Ontology (from version 2 of MyGene.info API with                  
data retrieved on 2018-05-18, GOBPtmp, GOBP) (The Gene Ontology Consortium, 2019; Ashburner et al.,              
2000; Wu et al., 2013; Xin et al., 2016), Kyoto Encyclopedia of Genes and Genomes (from version 6.1 of                   
MSigDB, KEGGBP) (Kanehisa and Goto, 2000; Kanehisa et al., 2017, 2019), DisGeNet (version 5.0,              
DisGeNet, BeFree) (Piñero et al., 2017, 2015), GWAS from a community challenge at             
https://www.synapse.org/#!Synapse:syn11944948 (Choobdar et al., 2019), and the Mouse Gene Informatics          
database (data retrieved on 2018-10-01, MGI) (Smith et al., 2018).  
 
Pre-processing genesets based on specificity, redundancy, and multi-functionality 
Each of these six geneset-collections contained anywhere from about a hundred to tens of thousands of                
genesets (Table S2) that varied widely in specificity and redundancy. The first pre-processing step we did after                 
downloading the data was to convert the original gene/protein IDs to entrez gene IDs, which was done using                  
gene ID conversions found in MyGene.info (Wu et al., 2013; Xin et al., 2016). If the original ID mapped to more                     
than one entrez ID, all of them were included for further analysis. Next, whenever applicable, annotations to                 
genesets corresponding to terms in a curated ontology were propagated along the is_a and part_of               
relationships to ancestor terms in the corresponding ontologies: Gene Ontology (Ashburner et al., 2000) for               
GOBP, Disease Ontology (Schriml et al., 2019) for DisGeNet and BeFree, and Mammalian Phenotype              
Ontology (Smith and Eppig, 2009) for MGI. 
 
Subsequent preprocessing steps were designed to ensure that the final set of genesets from each source are                 
specific, largely non-overlapping, and not driven by multi-attribute genes.  
Specificity: To select specific biologically-meaningful genesets in each collection, we sorted all the genesets              
in a collection from the largest to smallest based on the number of annotated genes (geneset size), manually                  
examined their descriptions, and chose a size threshold that roughly separated large, generic genesets from               
the smaller, specific ones. This threshold was 200 for GOBP and KEGGBP, 300 for MGI, 400 for BeFree, 500                   
for GWAS and GOBPtmp, and 600 for DisGeNet. 
Redundancy: To remove redundant genesets within a collection, first, we calculated the Jaccard index (              

) and the overlap index ( ) between all pairs of genesets (with andA | / |A || ⋂ B ⋃ B      A | / min(|A|, |B|)| ⋂ B         A   B  
representing the sets of genes annotated to the genesets). Then, we built a graph with the genesets as the                   
nodes, and added edges between genesets pairs if their Jaccard index was >0.5 and their overlap index was                  
>0.7. The geneset graph constructed in this manner contained many connected components, each             
representing a set of highly overlapping genesets. Finally, we used the following procedure to pick               
representative genesets within each component: a) calculate a score for each geneset equal to the sum of the                  
proportions of genes in other linked genesets that are contained within it (higher this score, more                
representative that geneset is), b) create a sorted list of all the genesets in decreasing order of this score, and                    
c) pick the first geneset in the list, remove every subsequent geneset that is connected to it in the graph, and                     
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repeat this step until the sorted list is empty. This procedure resulted in a reasonable number of non-redundant                  
genesets within each collection. The same Jaccard and overlap thresholds were used for all collections except                
MGI. For MGI, since an overlap cutoff of 0.7 still resulted in thousands of genesets, it was lowered to 0.5. 
Multi-attribute genes: Given the set of largely non-overlapping genesets in a collection, individual genes were               
removed from all genesets if they appeared in more than 10 genesets in that collection. This step ensures that                   
the evaluations are not biased by multi-attribute genes that can potentially be easily predicted in a non-specific                 
manner (Gillis and Pavlidis, 2011). 
 
We also note that we did not include the cellular component (CC) or molecular function (MF) classes of the                   
gene ontology as part of the function classification tasks because two genes that are annotated to the same                  
CC or MF need not be related to each other functionally. 
 
Table S2. Information on the geneset-collections. The last four columns reflect the fact each geneset-collection is 
slightly different for every network and these values are presented as either a range, a median value, or number of genes 
in a union across all networks used in this study.  

Geneset 
Collection 

Number of 
Genesets From 

Original Data 

Number of 
Genesets After 

Redundant 
Genesets Removed 

Number of 
Genesets After 

Holdout 
Preprocessing 

Geneset 
Sizes 

Median 
Geneset 

Size 

Number of Genes 
from Union of all 

Genesets 

GOBPtmp 11,574 to 754* 166 (115, 160) (27, 452) 174 9464 

GOBP 11,574 313 (84, 96)  (20, 181) 76 5301 

KEGGBP 149 138 (63, 74) (24, 181) 51 3454 

DisGeNet 4030 334 (89, 104) (21, 368) 67 4689 

BeFree 2891 207 (49, 57) (20, 223) 80 2692 

GWAS 169 74 (30, 37) (24, 431) 94 2134 

MGI 10,264 492 (90, 121) (20, 132) 41 2716 

* The GOBP temporal holdout step had an extra initial preprocessing step to make sure there were at least ten genes in                      
the training and testing sets.  
 
Calculating the network properties of the genesets 
To determine how the performance of a given geneset depends on the network, for each geneset we                 
calculated three different properties: 
 
1) For a given geneset,  the number of genes annotated it is given by ,T T| | .  
2) For a given geneset,  the edge density,  is given by,T ,DT   

                                                           ,                                              (eqn. S1)/DT = ∑
 

(u,v)∈T
W uv (|T | |T | )/2)* ( − 1  

    where  is the edge weight between genes  and . The edge density is a measure of how tightlyW uv u v   
    connected the geneset is within itself. 
3) For a given geneset,  the segregation,  is given by,T ,ST  

                                                                .                                                  (eqn. S2)/ST = ∑
 

(u,v)∈T
W uv ∑

 

u∈T , t∈V
W ut   

    Segregation is a measure of how isolated the geneset is from the rest of the network. 
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The three geneset properties are shown for all geneset-collection–network combinations in Fig. S3. In general,               
there is little difference in the number of genes across the different prediction tasks (i.e. function, disease and                  
trait), except for GOBPtmp, which has the largest number of genes due to the fact the genesets need to be                    
larger to have enough with at least 10 testing genes. Edge density and segregation are highest for the function                   
genesets (GOBPtmp, GOBP, KEGGBP) and lowest for the disease and trait genesets (DisGeNet, BeFree,              
GWAS, MGI).  
 

 
Fig. S3. Network properties for the different geneset-collections. The geneset-collections can be broken up into three                
prediction tasks; function (GOBPtmp, GOBP, KEGGBP; reds), disease (DiGeNet, BeFree; blues) and trait (GWAS, MGI;               
greys). In general, there is little difference in the number of genes across the different type prediction tasks (i.e. function,                    
disease and trait), except for GOBPtmp which has the largest number of genes due to the fact the genesets need to be                      
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larger to have enough with at least 10 testing genes. Edge density and segregation are highest for the function genesets                    
(GOBPtmp, GOBP, KEGGBP) and lowest for the disease and trait genesets (DisGeNet, BeFree, GWAS, MGI). 
 
Section 1.4: Validation schemes 
We used three different validation schemes to evaluate gene classification. 
 
Temporal holdout validation 
Temporal holdout is the most stringent evaluation scheme for gene classification since it mimics the practical                
scenario of using current knowledge to predict the future. Since Gene Ontology was the only source with clear                  
date-stamps for all its annotations, temporal holdout was applied only to the GOBP geneset-collection. Since               
the goal of this study is to use relatively recent and widely-used molecular networks, as this would reflect how                   
these models would be deployed in practice, we chose a temporal cutoff point of Jan 1st, 2017. Then, for each                    
geneset-collection, genes that only had an annotation to any geneset in the collection after 2017-01-01 were                
assigned to the testing set and the remaining genes were assigned to the training set. Since this resulted in the                    
testing set having far fewer genes than the testing set for the other validation schemes, we made the following                   
minor modifications to the geneset pre-processing procedure: GOBP geneset-collection was first filtered to             
remove any geneset with fewer than ten training genes or had fewer than ten testing genes based on the                   
temporal split and the specificity threshold (maximum number of genes annotated to a geneset) was increased                
from 200 to 500. Redundancy filtering and multi-attribute gene filtering were unchanged. As noted in Section                
1.1, from each network resource considered in this study, we chose the most recent version of the network that                   
was released before 2017-01-01 to ensure no data leakage. Finally, genes were removed from genesets if                
they were not present in a given network, genesets with fewer than ten training genes or fewer than ten testing                    
genes were filtered out, and the remaining genesets were used to perform the temporal holdout validation. 
 
Study-bias holdout validation 
The goal of study-bias validation is to evaluate the scenario that is close to the real-world situation of learning                   
from well-characterized genes to predict novel un(der)-characterized genes. Here, we defined study-bias for             
each gene as the number of articles in PubMed (http://www.pubmed.gov/) in which that gene was referenced                
in, as determined in the gene2pubmed file (downloaded on 2018-10-30) from the NCBI Gene database (Brown                
et al., 2015). Using this definition, for each geneset-collection–network combination, we created training-testing             
splits in the following manner: Genes were removed from genesets if they were not present in the given                  
network. Then, among the remaining genes, a gene was assigned to the training set if it was in the top                    
two-thirds of the list of genes sorted by their PubMed count. The remaining genes were assigned to the testing                   
set. Finally, genesets with fewer than ten training genes or fewer than ten testing genes were filtered out and                   
the remaining genesets were used to perform the study-bias holdout validation. 
 
Five-fold cross-validation 
To ensure comparability, we performed 5-fold cross-validation using the same genesets that were used in               
study-bias holdout, splitting each geneset randomly into five approximately equal folds (with similar proportions              
of positive and negative examples) and, in rotation, using one fold as the testing set and the remaining four as                    
the training set. 
 
Section 1.5: Evaluation Metrics 
In this study, we present results in terms of two popular metrics, auPRC and auROC, as well as the precision                    
of the top K ranked predictions (P@TopK). Since, each geneset-collection–network combination has a different              
number of positive examples (and, hence, different positive:negative proportions), we normalized auPRC and             
P@topK by the prior. Specifically, auPRC is given by: 
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                                                                                                                         (eqn. S3)uPRC (  )a = log2 prior
auPRCS  

where is the standard area under the precision-recall curve, and the prior is P/(P+N) with P being the auPRCS                   
number of positive ground truth labels, and N being the number of negative ground truth labels. The log2 in                   
eqn. S3 allows for the following interpretation: the number of 2-fold increases of the measured over               auPRCS  
what is expected given the ground truth labels (e.g., a value of 1 indicates a 2-fold increase, a value of 2                     
indicates a 4-fold increase). Similarly, P@topK is given by: 
                                                                                                                       (eqn. S4)@topK (  )P = log2

TPK
K×prior  

where is the number of top-predictions to consider, is the number true-positives of the top-K K         PT K         
predictions, and the prior is the same as in eqn. S3. We set to be the number of ground truth positives in the             K            
testing set. P@topK can be thought of as what is the 2-fold increase in the percent of the top-K predictions that                     
were predicted true over the expected value. Of note, it is possible that if no true positive is captured             PT k = 0        
within the first K predictions. This causes P@topK to become . To address this issue, we set such values          − ∞          
to be the minimum score obtained across all predictions for that given geneset-collection–network combination. 
 
Precision-based metrics – auPRC and P@topK – are more suitable than the more popular area under the                 
receiver-operating characteristic curve (auROC) for two reasons. First, gene classification is a highly             
imbalanced problem with many more negative examples than positive examples, and auROC is ill-suited for               
imbalanced problems (Saito and Rehmsmeier, 2015). Second, precision can control for Type-1 error (false              
positives) (Davis and Goadrich, 2006). Since the foremost reason for gene classification is to provide a list of                  
candidate genes for further experimental study, it is more important to make sure the top predictions are as                  
correct as possible, as opposed to ensuring that, on average, positive examples are ranked higher than                
negative examples. However, for completeness, we have provided auROC results in this Supplemental             
Material (Section 2). 

Section 2: Supplementary Results 
Section 2.1: Compiled results from all validation schemes in terms of all evaluation metrics 
In this section, we present results for the ranking analysis used in Fig. 2, significance test analysis used in                   
Fig. 3, as well as the boxplots representations seen in Fig. 4, based on all evaluation metrics (auPRC,                 
P@TopK, and auROC) as well as all validation schemes (temporal holdout, study-bias holdout and 5FCV)               
(Figs. S4 - S8). Additionally, in this section, we present the results of how the performance of SL-A and LP-I                    
scale with the number of genes, edge density, and segregation for all networks used in this study (Fig. S9). 
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Fig. S4. Average rank of the four methods for all evaluation metrics and validation schemes. Each point in a                   
boxplot represents the average rank for a geneset-collection–network combination, where the four methods were ranked               
in terms of performance for each geneset in a geneset-collection using the standard competition ranking. Different colors                 
represent different networks and different marker shapes represent different geneset-collections.   
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Fig. S5. Testing for a statistically significant difference between SL and LP methods using all evaluation metrics                 
and validation schemes. For each network-geneset combination, each method is compared to the two methods from the                 
other class (i.e. SL-A vs LP-I, SL-A vs LP-A, SL-I vs LP-I, SL-I vs LP-A). If a method was found to be significantly better                        
than both methods from the other class (Wilcoxon ranked-sum test with an FDR threshold of 0.05), the cell is annotated                    
with that method. If both models in that class were found to be significantly better than the two methods in the other class,                       
the cell is annotated in bold with just the class. The color scale represents the fraction of genesets that were higher for the                       
SL methods across all four comparisons. The first column uses GOBP temporal holdout, whereas the remaining 6                 
columns use study-bias holdout. B) SL methods show a statistically significant improvement over LP methods, especially                
for function prediction. 
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Fig. S6. Boxplots for auPRC performance across all geneset-collection–network combinations. The performance            
for each individual geneset-collection–network combination is compared across the four methods; SL-A (red), SL-I (light               
red), LP-I (blue), and LP-A (light blue). The methods are ranked by median value with the highest scoring method on the                     
left. The first column contains temporal and study-bias holdout, and the second column is 5FCV. The scoring metric is                   
auPRC. 
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Fig. S7. Boxplots for P@TopK performance across all geneset-collection–network combinations. The performance            
for each individual geneset-collection–network combination is compared across the four methods; SL-A (red), SL-I (light               
red), LP-I (blue), and LP-A (light blue). The methods are ranked by median value with the highest scoring method on the                     
left. The first column contains temporal and study-bias holdout, and the second column is 5FCV. The scoring metric is                   
P@TopK. 
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Fig. S8. Boxplots for auROC performance across all geneset-collection–network combinations. The performance            
for each individual geneset-collection–network combination is compared across the four methods; SL-A (red), SL-I (light               
red), LP-I (blue), and LP-A (light blue). The methods are ranked by median value with the highest scoring method on the                     
left. The first column contains temporal and study-bias holdout, and the second column is 5FCV. The scoring metric is                   
auROC. 
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Fig S9. Performance vs Network/Geneset properties for all networks. SL-A is able to capture network information as                 
efficiently as LP-I across all networks. There is no correlation between the number of genes in the geneset versus                   
performance, but there is a strong correlation between the performance and the edge density as well as segregation. The                   
different colored dots represent function genesets (red, GOBP and KEGGBP), disease genesets (blue, DIsGeNet and               
BeFree), and trait genesets (black, GWAS and MGI). The vertical line is the 95% confidence interval and the performance                   
metric is auPRC. 
 
Section 2.2: Effect Size 
In this section, we show results for the effect size between all methods (SL-A, SL-I, LP-I, LP-A). To calculate                   
an effect size, for every geneset we calculate the ratio of auRPC values, find the percent increase/decrease                 
and then take the median value for every geneset-collection–network combination. The results show that SL-A               
has a significant effect size when compared to LP-I for function prediction (53% for temporal holdout and 19%                  
for Study-bias holdout). Also, for all prediction tasks the effect size seen between the SL methods and LP-I is                   
equal to or greater than the effect size between LP-I and LP-A, where LP-I is widely considered a much better                    
model than LP-A and thus, the comparison between LP-I and LP-A can be viewed as a baseline effect size. 
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Fig S10. Effect size for every pair of methods. Each point is the median percent increase for every                  
geneset-collection–network combination. (A) Functional prediction tasks using GOBP temporal holdout, (B) Functional            
prediction tasks using study-bias holdout for GOBP and KEGGBP, and (C) Disease and trait prediction tasks using                 
study-bias holdout for DisGeNet, BeFree, GWAS, and MGI. The results are shown for auPRC where different colors                 
represent different networks and different marker styles represent the different geneset-collections. 
 
Section 2.3: Label Propagation with Negative Examples 
In this section, we show results for using negative examples in label propagation (LPN). We performed the                 
same hyperparameter tuning for the restart parameter as described in Supplemental Section 1.2 and find a                

15 



restart parameter of 0.45 is optimum when using negative examples (Fig. S11). This optimal value for the                 
restart parameter in LPN is relatively low compared to the optimum value for LP (expect for the GIANT-TN                  
network were both LP and LPN prefer a higher restart value). It is worth noting, that just like with LP, the                     
dependance on the restart parameter is minimal (Fig. S11B). We also include boxplots comparing label               
propagation with and without negative examples (Fig. S12). Lastly, we show a side by side comparison of the                  
ranking analysis (Fig. S13) and Wilxcon analysis (Fig. S14) using label propagation with and without negative                
examples. The results show that even though using negative examples slightly increases performance in label               
propagation, the results when compared against supervised learning remain unchanged.  
  

 
Fig. S11. Tuning the restart probability hyperparameter when using negative examples in label propagation. A)               
Each point in each boxplot represents the average rank for a geneset-collection–network combination, where the five                
restart probabilities (0.45, 0.55, 0.65, 0.75 and 0.85) were ranked in terms of performance (auPRC) for each geneset in a                    
geneset-collection using the standard competition ranking. A restart probability of 0.45 was chosen as optimal. B) The                 
performance for each individual geneset-collection–network combination is compared across the five restart probabilities.             
The methods are ranked by median value of auRPC with the highest scoring method on the left. There is no strong                     
dependence of auRPC on the restart probability.  
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Fig. S12. Boxplots for performance across all geneset-collection–network combinations for label propagation on             
the influence matrix with and without using negative examples. A) The performance for each individual               
geneset-collection–network combination is compared for label propagation with negative examples (LPN-I, blue) and label              
propagation without negative examples (LP-I, green). The methods are ranked by median value with the highest scoring                 
method on the left. Results show LPN-I has a moderately increased performance when compared to LP-I. B) Each point                   
in the plot is the median value from one of the boxplots in A. This shows that both LPN and LP methods perform better for                         
function prediction compared to disease/trait prediction.  
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Fig. S13. Comparing results from average rank analysis with and without using negative examples in label                
propagation. The left column has label propagation without negative examples (LP) and the right column has label                 
propagation with negative examples (LPN). Each point in each boxplot represents the average rank for a                
geneset-collection–network combination, obtained based on ranking the four methods in terms of performance for each               
geneset in a geneset-collection using the standard competition ranking. (A, D) Functional prediction tasks using GOBP                
temporal holdout, (B, E) Functional prediction tasks using study-bias holdout for GOBP and KEGGBP, and (C, F) Disease                  
and trait prediction tasks using study-bias holdout for DisGeNet, BeFree, GWAS, and MGI. The results are shown for                  
auPRC where different colors represent different networks and different marker styles represent the different              
geneset-collections. The results show that no substantial difference can be seen between using or not using negative                 
examples in label propagation. 
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Fig. S14. Comparing the Wilcoxon statistical test analysis with and without using negative examples in label                
propagation. A) Label propagation without negative examples (LP) and B) label propagation with negative examples               
(LPN). For each network-geneset combination, each method is compared to the two methods from the other class. If a                   
method was found to be significantly better than both methods from the other class (Wilcoxon ranked-sum test with an                   
FDR threshold of 0.05), the cell is annotated with that method. If both models in that class were found to be significantly                      
better than the two methods in the other class, the cell is annotated in bold with just the class. The color scale represents                       
the fraction of genesets that were higher for the SL methods across all four comparisons. The first column uses GOBP                    
temporal holdout, whereas the remaining 6 columns use study-bias holdout. The results show that no substantial                
difference can be seen between using or not using negative examples in label propagation. 
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